Long-term behavior of polynomial chaos in stochastic flow simulations
نویسندگان
چکیده
In this paper we focus on the long-term behavior of generalized polynomial chaos (gPC) and multi-element generalized polynomial chaos (ME-gPC) for partial differential equations with stochastic coefficients. First, we consider the one-dimensional advection equation with a uniform random transport velocity and derive error estimates for gPC and ME-gPC discretizations. Subsequently, we extend these results to other random distributions and high-dimensional random inputs with numerical verification using the algebraic convergence rate of ME-gPC. Finally, we apply our results to noisy flow past a stationary circular cylinder. Simulation results demonstrate that MEgPC is effective in improving the accuracy of gPC for a long-term integration whereas high-order gPC cannot capture the correct asymptotic behavior. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
Polynomial chaos expansions (PCE) allow us to propagate uncertainties in the coefficients of differential equations to the statistics of their solutions. Their main advantage is that they replace stochastic equations by systems of deterministic equations. Their main challenge is that the computational cost becomes prohibitive when the dimension of the parameters modeling the stochasticity is ev...
متن کاملAn Empirical Chaos Expansion Method for Uncertainty Quantification
Uncertainty quantification seeks to provide a quantitative means to understand complex systems that are impacted by uncertainty in their parameters. The polynomial chaos method is a computational approach to solve stochastic partial differential equations (SPDE) by projecting the solution onto a space of orthogonal polynomials of the stochastic variables and solving for the deterministic coeffi...
متن کاملStochastic Solvers for the Euler Equations
In this paper we extend our previous work, first presented in, to handle effectively non-Gaussian processes and long-time integration in unsteady simulations of compressible flows. Specifically, we apply the generalized polynomial chaos (GPC) method to solve the one-dimensional stochastic Euler equations. We present systematic verification studies against an analytical solution of the stochasti...
متن کاملPredicting shock dynamics in the presence of uncertainties
We revisit the classical aerodynamics problem of supersonic flow past a wedge but subject to random inflow fluctuations or random wedge oscillations around its apex. We first obtain analytical solutions for the inviscid flow, and subsequently we perform stochastic simulations treating randomness both as a steady as well as a time-dependent process. We use a multi-element generalized polynomial ...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006